Analisis Optimalisasi Kapasitas Sistem Ventilasi Exhaust Berdasarkan Jumlah Lemari Penyimpanan Cairan Volatil di Laboratorium Industri Pelumas

Authors

  • Elysia Callysta Wibowo Universitas Pembangunan Nasional "Veteran" Jawa Timur
  • Firra Rosariawari Universitas Pembangunan Nasional "Veteran" Jawa Timur

DOI:

https://doi.org/10.58169/jwikal.v4i2.999

Keywords:

Acid Cabinet, Air Change Rate, Optimization, Safety Factor, Ventilation System

Abstract

This study analyzes the conditions of extreme overcapacity in an installed exhaust ventilation system (Qinstalled = 18.00 /minute) that serves four acid cabinet units, specifically for the storage of volatile Hazardous and Toxic Materials (B3) such as toluene and methanol in tightly sealed containers. Although high capacity ensures safety, this practice causes significant energy inefficiency and unnecessary negative pressure problems in the room. Based on engineering analysis using a conservative Air Change Rate (ACR) standard of   for liquid storage of 1.38 /minute. By applying the industry standard safety factor (FoS) of 1.5, the ideal flow rate (Qideal) that must be allocated is 2.07 . The optimization analysis concludes that the currently installed system is theoretically capable of safely and efficiently serving 8 units of volatile storage acid cabinets, with the addition of 4 new cabinets to maximize efficiency and reduce energy waste. This utilizes 92% of the total capacity while maintaining a safety factor above 1.5.

References

Alden, L. J. (1981). Design of industrial exhaust systems. The Industrial Press.

ASHRAE. (2015). ASHRAE laboratory design guide: Planning and operation of laboratory HVAC systems (2nd ed.). ASHRAE.

Chen, K., Wang, W., & Zhang, W. (2019). Investigation of influential factors on laboratory fume hood containment performance. Science and Technology for the Built Environment, 26, 1–14. https://doi.org/10.1080/23744731.2019.1637192

Ivanov, K., Georgieva, N., Tasheva, S., & Gandova, V. (2021). Analysis of energy efficiency of an industrial system. IOP Conference Series: Materials Science and Engineering, 1031(1), 012080. https://doi.org/10.1088/1757-899X/1031/1/012080

Jane, H., Grubb, G., & Alvarro, L. (1998). Industrial ventilation: A manual of recommended practice. American Conference of Governmental Industrial Hygienists.

Kalra, J., & Tareq, A. (2025). Human factors in design engineering and computing (pp. 243–244).

Maulana, D., Rozak, O. A., Nurtiyanto, W. A., & Raharjo, T. (2023). Efisiensi daya dan konsumsi energi listrik pada penerangan jalan tol Pondok Aren. ELC Journal, 17(3). https://doi.org/10.23960/elc.v17n3.2522

Muta, R., Chung, J., Li, C., Yoo, S.-J., & Ito, K. (2022). Pollutant capture efficiencies in and around the opening surface of a fume hood under realistic conditions. Indoor and Built Environment, 31(6), 1636–1653. https://doi.org/10.1177/1420326X211066538

Purwarupa sistem pengendali kipas ventilasi udara menggunakan metode fuzzy logic. (2024). Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 8(3).

Qosim, N. (2020). Analisis kegagalan kompresor torak PK 60–150 dengan metode failure mode and effect analysis. Jurnal Teknik Mesin, 80–89.

Ridal, Y., & Nazallul, C. (2025). Analisis pengaruh faktor daya terhadap efisiensi pemakaian energi listrik pada pelanggan golongan tarif I-3 PT PLN (Persero) UP3 Padang. Ekasakti Jurnal Penelitian dan Pengabdian, 5, 161–172.

Saing, B., Kustiyah, E., Agustin, D. Y., & Amalia, R. Y. (2023). Main hazard control and hazardous material handling in environment testing laboratory. Occupational Ergonomics, 15(2), 175–184. https://doi.org/10.22441/oe.2023.v15.i2.083

The Engineering ToolBox. (n.d.). Air change rates in typical rooms and buildings. Retrieved 2025 from https://www.engineeringtoolbox.com/air-change-rate-d_882.html

Xu, Z., & Zhou, B. (2017). Calculation of air change rate. In Z. Xu & B. Zhou (Eds.), Dynamic isolation technologies in negative pressure isolation wards (pp. 147–161). Springer Singapore. https://doi.org/10.1007/978-981-10-2923-3_5

Zaki, A. K. (2020). Pengembangan lemari asam (fume hood) dengan tiga variasi kecepatan menggunakan sistem otomatis pada Laboratorium Teknik Mesin Universitas Islam Riau [Undergraduate thesis]. Universitas Islam Riau.

Downloads

Published

2025-12-31

How to Cite

Elysia Callysta Wibowo, & Firra Rosariawari. (2025). Analisis Optimalisasi Kapasitas Sistem Ventilasi Exhaust Berdasarkan Jumlah Lemari Penyimpanan Cairan Volatil di Laboratorium Industri Pelumas. JURNAL WILAYAH, KOTA DAN LINGKUNGAN BERKELANJUTAN, 4(2), 60–67. https://doi.org/10.58169/jwikal.v4i2.999

Similar Articles

<< < 1 2 3 4 > >> 

You may also start an advanced similarity search for this article.