Integrasi Kecerdasan Buatan Dalam Sistem Rekomendasi Produk Untuk E-Commerce

Authors

  • Sitti Aliyah Azzahra STIE Ganesha
  • Syafran Nurrahman STIE Ganesha
  • Aep Saefullah STIE Ganesha

DOI:

https://doi.org/10.58169/saintek.v3i1.394

Keywords:

Recommendation System, E-commerce, AI, Machine Learning, NLP

Abstract

The increasing popularity of e-commerce has driven the development of more sophisticated product recommendation systems to enhance user experience. Within this framework, the incorporation of Artificial Intelligence (AI) has become essential for enhancing the caliber of product suggestions through the examination of user behavioral patterns and product attributes. This paper explores the incorporation of artificial intelligence into e-commerce product recommendation systems. This strategy integrates AI methodologies like machine learning, data mining, and natural language processing (NLP) to produce recommendation systems that are personalized and pertinent. Through in-depth analysis of user data and product information, the system can predict user preferences with higher accuracy, improve user engagement levels, and ultimately increase sales conversions. By combining domain knowledge, technical expertise, and the latest research methodologies, This research offers valuable insights for both e-commerce system developers and artificial intelligence researchers. The integration of artificial intelligence into product recommendation systems represents a critical measure in facilitating growth and fostering innovation within the ever-changing e-commerce landscape.

 

References

Alfarizi, M. R. S., Al-farish, M. Z., Taufiqurrahman, M., Ardiansah, G., & Elgar, M. (2023). Penggunaan Python Sebagai Bahasa Pemrograman untuk Machine Learning dan Deep Learning. Karya Ilmiah Mahasiswa Bertauhid (KARIMAH TAUHID), 2(1), 1–6.

Channarong, C., Paosirikul, C., Maneeroj, S., & Takasu, A. (2022). HybridBERT4Rec : A Hybrid ( Content-Based Filtering and Collaborative Filtering ) Recommender System Based on BERT. IEEE Access, 10, 56193–56206. https://doi.org/10.1109/ACCESS.2022.3177610

Fatihah, D. C., & Saidah, I. S. (2021). Model Promosi Marketplace Berbasis Artificial Inteligence (AI) di Indonesia. JMBI UNSRAT (Jurnal Ilmiah Manajemen Bisnis dan Inovasi Universitas Sam Ratulangi)., 8(3). https://doi.org/10.35794/jmbi.v8i3.35908

Hartatik, H., Nurhayati, S. D., & Widayani, W. (2021). Sistem Rekomendasi Wisata Kuliner di Yogyakarta dengan Metode Item-Based Collaborative Filtering. Journal Automation Computer Information System, 1(2), 55–63. https://doi.org/10.47134/jacis.v1i2.8

Mulasih, S., & Saefullah, A. (2024). Tren Pemasaran Digital: Analisis Perbandingan Platform Media Sosial Facebook Ads Dan Google Ads. Jurnal Riset Rumpun Ilmu Ekonomi, 3(1), 89–101. https://doi.org/10.55606/jurrie.v3i1.2768

Negara, M. S., & M, A. Z. (2024). IMPLEMENTASI MACHINE LEARNING DENGAN METODE COLLABORATIVE FILTERING DAN CONTENT-BASED FILTERING PADA APLIKASI MOBILE TRAVEL ( BANGKIT ACADEMY ). 5(1), 126–136.

Nurrahman, S., Pranoto, G. T., Tjahjanto, T., & Samidi, S. (2022). Decision Support System to Select the Best Customers Using Analytical Hierarchy Process (AHP) Methods, Simple Additive Weighting (SAW) Methods, Weight Aggregated Sum Product Assessment Methods (WASPAS) at the Kebaya Shop. JISA(Jurnal Informatika dan Sains), 5(2), 106–115. https://doi.org/10.31326/jisa.v5i2.1317

Putri, D. A., Pramesti, D., I, D., & Santiyasa, W. (2022). Penerapan Metode Content-Based Filtering dalam Sistem Rekomendasi Video Game. Jnatia, 1(1), 229–234.

Riswan, D., Putra, H. E. R., & Saputra, R. N. (2024). Pengembangan Sistem Rekomendasi Berbasis Kecerdasan Buatan Untuk Meningkatkan Pengalaman Pengguna Di Platform E-Commercee. Jurnal Komputer Teknologi Informasi Sistem Komputer (JUKTISI), Volume 2 N, 572–58.

Roihan, A., Abas Sunarya, P., & Rafika, A. S. (2019). IJCIT (Indonesian Journal on Computer and Information Technology) Pemanfaatan Machine Learning dalam Berbagai Bidang: Review paper. Dalam IJCIT (Indonesian Journal on Computer and Information Technology) (Vol. 5, Nomor 1).

Sari, P. K., & Suryono, R. R. (2024). Komparasi Algoritma Support Vector Machine Dan Random Forest Untuk Analisis Sentimen Metaverse. Jurnal Mnemonic, 7(1), 31–39. https://doi.org/10.36040/mnemonic.v7i1.8977

Shanthamallu, U. S., & Spanias, A. (2022). Introduction to Machine Learning. Synthesis Lectures on Signal Processing, 1–8. https://doi.org/10.1007/978-3-031-03758-0_1

Wicaksono, A., Saefullah, A., Candra, H., & Tahang, M. (2024). Penggunaan Platform Akademik Untuk Meningkatkan Publikasi Karya Ilmiah ; Evaluasi Kinerja Dosen STIE Ganesha Manusia ( SDM ) dosen , kurikulum , pembelajaran , mahasiswa , sarana prasarana , suasana dosen perolehan informasi dari berbagai sumber untuk seg. 1(2).

Yunanto, R., Purfini, A. P., & Prabuwisesa, A. (2021). Survei Literatur: Deteksi Berita Palsu Menggunakan Pendekatan Deep Learning. Jurnal Manajemen Informatika (JAMIKA). https://doi.org/10.34010/jamika.v11i2.493

Published

2024-06-04

How to Cite

Sitti Aliyah Azzahra, Syafran Nurrahman, & Aep Saefullah. (2024). Integrasi Kecerdasan Buatan Dalam Sistem Rekomendasi Produk Untuk E-Commerce. Jurnal Sains Dan Teknologi, 3(1), 21–28. https://doi.org/10.58169/saintek.v3i1.394